Guaranteed Characterization of the Area Explored by an Autonomous Robot

Maria Luiza Costa Vianna ^{1,2} Eric Goubault ¹ Luc Jaulin ² Sylvie Putot ¹

 1 Laboratoire d'Informatique de l'École Polytechnique (LIX) $\,$

²ENSTA Bretagne, Lab-STICC

Palaiseau, 08/03/2022

- Introduction
- Problem Statement
- 3 Problem Approach
- 4 Calculating the Winding Number
- **6** Daurade Mission
- 6 Conclusions and Future Work

- Introduction
- Problem Statement
- 3 Problem Approach
- 4 Calculating the Winding Number
- **5** Daurade Mission
- 6 Conclusions and Future Work

Introduction

Explored Area

The explored area is the union of the visible areas over the whole trajectory.

Introduction

Explored Area

The explored area is the union of the visible areas over the whole trajectory.

Problem

- Calculate the explored area.
- Calculate the number of times each point in the environment has been explored.

Applications

- Assess area-covering missions
 - Determine if a mission is complete
 - Plan other missions to fill possible gaps
- Guarantee that if a target is not detected, the target does not exist.

- Introduction
- Problem Statement
- 3 Problem Approach
- Calculating the Winding Number
- **6** Daurade Mission
- 6 Conclusions and Future Work

Problem Statement

Hypothesis

- $x(.): \mathbb{R} \to \mathbb{R}^2$
- $T = [0, T_{max}]$
- x(.) is continuous in T.
- x(.) and $\dot{x}(.)$ are known.

Problem Statement

• $\mathbb{V}(x(t),\dot{x}(t))$ is the visible area at time t.

Problem Statement

 $\mathbb{A}_{\mathbb{E}}$ is the explored area $\mathbb{A}_{\mathbb{E}} = igcup_{t \in T} \mathbb{V}(t)$

- Introduction
- Problem Statement
- 3 Problem Approach
- 4 Calculating the Winding Number
- **6** Daurade Mission
- 6 Conclusions and Future Work

Sonar Contour

From the robot's trajectory x(.) and the knowledge of the range of visibility of each observation sensor, the sonar contour $\gamma(.)$ can be defined as illustrated.

- $\gamma(.): \mathbb{R} \to \mathbb{R}^2$
- $T_{\gamma} = [0, 1]$
- $\gamma(.)$ is continuous in T_{γ} .
- $\gamma(0) = \gamma(1)$.

Winding Number

Winding Number

The winding number $\eta(\gamma(.), p)$ of a closed curve $\gamma(.)$ in the plane around a given point p is an integer representing the total number of times that curve travels counterclockwise around the point. [1]

Problem Approach

$$\mathbb{A}_{\mathbb{E}} = \{ z \in \mathbb{R}^2 | \eta(\gamma(.), z) \neq 0 \}$$

Problem Approach

Entries

- $\gamma(.)$, the sonar's contour.
- $\dot{\gamma}(.)$, the contour's derivative.

Problem Approach

Entries

- $\gamma(.)$, the sonar's contour.
- $\dot{\gamma}(.)$, the contour's derivative.

Desired Output

- Guaranteed approximation of the explored area $\mathbb{A}_{\mathbb{E}}$.
- Number of times each point in $\mathbb{A}_{\mathbb{E}}$ was seen during the mission.

Proposed solution

$$\eta(\gamma(.),.)$$

- Introduction
- Problem Statement
- 3 Problem Approach
- 4 Calculating the Winding Number
- **6** Daurade Mission
- 6 Conclusions and Future Work

Self Intersections

- Let $\gamma(.)$ be a continuous cycle, $\gamma(.):[0,1]\to\mathbb{R}^2$,
- A self-intersection of $\gamma(.)$ determined by parameters (τ_0, τ_1) , is a point x such that $x = \gamma(\tau_0) = \gamma(\tau_1)$, with $0 \le \tau_0 < \tau_1 \le 1$.

Simple Cycle (Jordan Curve)

- $\gamma(.)$ is a simple cycle if it has only one self-intersection determined by the unique pair (0,1).
- $\gamma(.)$ is homeomorphic to S^1 .

IntroductionProblem StatementProblem ApproachCalculating the Winding NumberDaurade MissionConclusions and Future000000000000000000000000

Simple Cycle

Jordan Curve Theorem

Jordan Curve Theorem

Jordan Curve Theorem

Jordan Curve Theorem

If $\gamma(.)$ is a simple cycle and $p \in \mathbb{R}^2 \backslash \gamma(.)$,

$$\eta(\gamma(.), \mathbf{p}) = \begin{cases} \chi_{\mathbb{I}_{\gamma}}(\mathbf{p}) - 1 & \text{, if } \gamma(.) \text{ is clockwise oriented} \\ \chi_{\mathbb{I}_{\gamma}}(\mathbf{p}) & \text{otherwise} \end{cases}$$

Where, $\chi_{\mathbb{I}_{\gamma}}(.)$ is the characteristic function of γ 's interior set \mathbb{I}_{γ} .

If $\gamma(.)$ is a simple cycle and $p \in \mathbb{R}^2 \backslash \gamma(.)$,

$$\eta(\gamma(.), \mathbf{p}) = \begin{cases} \chi_{\mathbb{I}_{\gamma}}(\mathbf{p}) - 1 & \text{, if } \gamma(.) \text{ is clockwise oriented} \\ \chi_{\mathbb{I}_{\gamma}}(\mathbf{p}) & \text{otherwise} \end{cases}$$

Where, $\chi_{\mathbb{I}_{\gamma}}(.)$ is the characteristic function of γ 's interior set \mathbb{I}_{γ} .

$$\frac{1}{\eta(\gamma(.), p_1) = 0}$$

$$\eta(\gamma(.), p_2) = 1$$

Hypothesis

 $\gamma(.)$ is a continuous non-simple cycle:

- $\gamma(.): [0,1] \to \mathbb{R}^2$,
- $\gamma(0) = \gamma(1)$,
- $\exists (\tau_0, \tau_1), 0 < \tau_0 < \tau_1 < 1 | \gamma(\tau_0) = \gamma(\tau_1).$

Hypothesis

 $\gamma(.)$ is a continuous non-simple cycle:

- $\gamma(.): [0,1] \to \mathbb{R}^2$,
- $\gamma(0) = \gamma(1)$,
- $\exists (\tau_0, \tau_1), 0 < \tau_0 < \tau_1 < 1 | \gamma(\tau_0) = \gamma(\tau_1).$

$$\mathbb{I}_{\gamma} = A_1 \cup A_2 \\
\mathbb{E}_{\gamma} = \mathbb{R}^2 \backslash \mathbb{I}_{\gamma} \\
\boxed{\square} A_1 \\
\boxed{\square} A_2$$

Cell Decomposition:

Cell Decomposition:

Self-intersections:

$$X_{\gamma} = \{ x \in \mathbb{R}^2 | \exists (\tau_0, \tau_1), 0 \le \tau_0 < \tau_1 \le 1, x = \gamma(\tau_0) = \gamma(\tau_1) \},$$

Cell Decomposition:

• Self-intersections:

$$X_{\gamma} = \{ x \in \mathbb{R}^2 | \exists (\tau_0, \tau_1), 0 \le \tau_0 < \tau_1 \le 1, x = \gamma(\tau_0) = \gamma(\tau_1) \},$$

• **Edges**: Connected components of $\gamma(.)\backslash X_{\gamma}$,

Cell Decomposition:

Self-intersections:

$$X_{\gamma} = \{ x \in \mathbb{R}^2 | \exists (\tau_0, \tau_1), 0 \le \tau_0 < \tau_1 \le 1, x = \gamma(\tau_0) = \gamma(\tau_1) \},$$

• **Edges** : Connected components of $\gamma(.)\backslash X_{\gamma}$,

Cell Decomposition:

• Self-intersections:

$$X_{\gamma} = \{ x \in \mathbb{R}^2 | \exists (\tau_0, \tau_1), 0 \le \tau_0 < \tau_1 \le 1, x = \gamma(\tau_0) = \gamma(\tau_1) \},$$

- **Edges**: Connected components of $\gamma(.)\backslash X_{\gamma}$,
- **Cells**: Connected components of $\mathbb{R}^2 \setminus \gamma(.)$.

Cell Decomposition:

• Self-intersections:

$$X_{\gamma} = \{ x \in \mathbb{R}^2 | \exists (\tau_0, \tau_1), 0 \le \tau_0 < \tau_1 \le 1, x = \gamma(\tau_0) = \gamma(\tau_1) \},$$

- A cycle can be algebraically described as a sum of all its edges, this sum results in zero.
- A cycle is simple if no other cycle can be written as a boolean combination of its edges.

$$\begin{aligned} &C_{\gamma}: a_1 + a_2 + a_3 = 0\\ &C_{\mathbf{X}_2}: a_2 = 0 \text{ , } \mathbb{I}_{\mathbf{X}_2} = A_2\\ &C_{\overline{\mathbf{X}}_2}: a_1 + a_3 = 0 \text{ , } \mathbb{I}_{\overline{\mathbf{X}}_2} = A_1 + A_2 \end{aligned}$$

$$\begin{aligned} &C_{\gamma}: \mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3 = 0\\ &C_{x_2}: \mathbf{a}_2 = 0 \text{ , } \mathbb{I}_{x_2} = A_2\\ &C_{\overline{\mathbf{x}}_2}: \mathbf{a}_1 + \mathbf{a}_3 = 0 \text{ , } \mathbb{I}_{\overline{\mathbf{x}}_2} = A_1 + A_2 \end{aligned}$$

$$C_{\gamma}=C_{\mathrm{x}_2}+C_{\mathrm{ar{x}}_2}=0$$
 , $\mathbb{I}_{\gamma}=A_1+2A_2$ For $p\in\mathbb{R}^2ackslash\gamma(.)$, $\eta(\gamma(.),p)=\chi_{\mathbb{I}_{\mathrm{x}_2}}(p)+\chi_{\mathbb{I}_{\mathrm{x}_2}}(p)$

Let $\gamma(.)$ be a continuous cycle and $p \in \mathbb{R}^2 \backslash \gamma(.)$,

$$\eta(\gamma(.), p) = -Z_{\gamma} + \sum_{u \in U_{\gamma}} \chi_u(p)$$

Where,

- U_{γ} is the generating set of simple cycles such that $\sum\limits_{u\in U_{\gamma}}u=\mathcal{C}_{\gamma}$,
- Z_{γ} is the number of clockwise oriented cycles in U_{γ} ,
- $\chi_{\mathbb{I}_u}(.)$ is the characteristic function of u's interior set \mathbb{I}_u .

$$\begin{split} \mathcal{U}_{\gamma} &= \{ \mathit{C}_{\mathsf{X}_{2}}(.), \mathit{C}_{\bar{\mathsf{X}}_{2}} \} \; \mathsf{and} \; \mathit{Z}_{\gamma} = 0 \\ & \mathsf{For} \; \mathit{p} \in \mathbb{R}^{2} \backslash \gamma(.) \; , \\ & \eta(\gamma(.), \mathit{p}) = - \mathit{Z}_{\gamma} + \sum_{\mathit{u} \in \mathit{U}_{\gamma}} \chi_{\mathit{u}}(\mathit{p}) = \chi_{\mathbb{I}_{\mathsf{X}_{2}}}(\mathit{p}) + \chi_{\mathbb{I}_{\bar{\mathsf{X}}_{2}}}(\mathit{p}) \end{split}$$

$$U_{\gamma}=\{C_{\gamma}\}$$
 and $Z_{\gamma}=1$ For $p\in\mathbb{R}^2\backslash\gamma(.)$,
$$\eta(\gamma(.),p)=-Z_{\gamma}+\sum_{u\in U_{\gamma}}\chi_u(p)=\chi_{\mathbb{I}_{\gamma}}-1$$

Example:

Cell Decomposition:

- $X_{\gamma} = \{x_1, x_2, x_3, x_4, x_5\}$
- $a_{\gamma} = \{a_1, a_2, a_3, a_4, ..., a_9\}$
- $A_{\gamma} = \{A_1, A_2, A_3, A_4, E_1, E_2\}$

$$C_{\gamma}$$
: $a1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 = 0$

$$C_{\gamma}:a1+a_2+a_3+a_4+a_5+a_6+a_7+a_8+a_9=0$$

$$C_{x_2}:a_2+a_3+a_4=0$$

$$\mathbb{I}_{x_2}=A_2+A_3+E_1$$

$$C_{\gamma}:a1+a_2+a_3+a_4+a_5+a_6+a_7+a_8+a_9=0$$

$$C_{x_3}:a_3+a_4+a_5=0$$

$$\mathbb{I}_{x_3}=A_2+A_4+A_3+E_1$$

$$C_{\gamma}:a1+a_2+a_3+a_4+a_5+a_6+a_7+a_8+a_9=0$$

$$C_{x_5}:a_4+a_5+a_6+a_7+a_8=0$$

$$\mathbb{I}_{x_5}=A_2+A_4-E_1$$

$$C_{\gamma}:a1+a_2+a_3+a_4+a_5+a_6+a_7+a_8+a_9=0$$

$$C_{x_5}:a_4+a_5+a_6+a_7+a_8=0$$

$$C_{x_4}:a_7=0$$

$$\mathbb{I}_{x_4}=-E_1$$

Algorithm

$$C_r = C_{\gamma}$$
,

- 1 Choose a simple cycle c in C_r ,
- 2 Add c to U_{γ} ,
- 3 Remove c from C_r : $C_r c$,
- 4 If C_r is not simple, go to 1. Add C_r to U_{γ} .

$$C_r: a_1+a_2+a_3+a_4+a_5+a_6+a_7+a_8+a_9 = 0,$$

Algorithm

$$C_r = C_{\gamma}$$
,

- 1 Choose a simple cycle c in C_r ,
- 2 Add c to U_{γ} ,
- 3 Remove c from C_r : $C_r c$,
- 4 If C_r is not empty, go to 1. Add C_r to U_{γ} .

$$C_r: a_1+a_2+a_3+a_4+a_5+a_6+a_7+a_8+a_9=0,$$

- 2 $U_{\gamma} = \{C_{x_2}\},\$
- 3 $C_r: C_r c = a_1 + a_5 + a_6 + a_7 + a_8 + a_9 = 0.$

Algorithm

$$C_r = C_{\gamma}$$
,

- 1 Choose a simple cycle c in C_r ,
- 2 Add c to U_{γ} ,
- 3 Remove c from C_r : $C_r c$,
- 4 If C_r is not empty, go to 1. Add C_r to U_{γ} .

$$C_r: a_1 + a_5 + a_6 + a_7 + a_8 + a_9 = 0,$$

Algorithm

$$C_r = C_{\gamma}$$
,

- 1 Choose a simple cycle c in C_r ,
- 2 Add c to U_{γ} ,
- 3 Remove c from C_r : $C_r c$,
- 4 If C_r is not empty, go to 1. Add C_r to U_{γ} .

$$C_r: a_1 + a_5 + a_6 + a_7 + a_8 + a_9 = 0,$$

- 1 $c = C_{x_A} : a_7 = 0$
- $2 U_{\gamma} = \{C_{x_2}, C_{x_4}\},$

Algorithm

$$C_r = C_{\gamma}$$
,

- 1 Choose a simple cycle c in C_r ,
- 2 Add c to U_{γ} ,
- 3 Remove c from C_r : $C_r c$,
- 4 If C_r is not empty, go to 1. Add C_r to U_{γ} .

$$C_r: a_1 + a_5 + a_6 + a_7 + a_8 + a_9 = 0$$

- 1 $c = C_{x_A} : a_7 = 0$
- $U_{\gamma} = \{C_{x_2}, C_{x_4}\},\$
- 3 $C_r: C_r c = a_1 + a_5 + a_6 + a_8 + a_9 = 0.$ $U_{\gamma} = \{C_{x_2}, C_{x_A}, C_r\},$

$$U_{\gamma} = \{C_{x_2}, C_{x_4}, C_r\} \text{ and } Z_{\gamma} = 1$$

$$\eta(\gamma(.), p) = -Z_{\gamma} + \sum_{u \in U_{\gamma}} \chi_u(p) = \chi_{\mathbb{I}_{x_2}} + \chi_{\mathbb{I}_{x_4}} + \chi_{\mathbb{I}_r} - 1$$

- Introduction
- Problem Statement
- 3 Problem Approach
- 4 Calculating the Winding Number
- **5** Daurade Mission
- **6** Conclusions and Future Work

Daurade

Data

- DVL,
- IMU.
- Pressure.

Courtesy of DGA/GESMA

Mission

- Classical survey path (law-mowing pattern),
- Roadstead of Brest (France, Brittany),
- 47 minutes.

- Introduction
- Problem Statement
- 3 Problem Approach
- 4 Calculating the Winding Number
- **6** Daurade Mission
- 6 Conclusions and Future Work

Conclusions

Using the topological properties of the robot's exteroceptive sensors contour, we are able to

- determine the are explored during a mission,
- determine the number of times a point in the space was in the robot's range of visibility,

Future Work

- Consider cases where the sensor's contour moves backwards,
- Test the algorithm in real time.

[1] S. G. Krantz.

The index or winding number of a curve about a point. In *Handbook of Complex Variables*, pages 49–50, Boston, MA, 1999.

